Characterisation of $Zn_3(VO_4)_2$ Phases in V_2O_5 -doped ZnO Varistors

Huey Hoon Hng* and Kevin M. Knowles

Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK

Abstract

Zinc oxide-rich $ZnO-V_2O_5$ (ZV), $ZnO-V_2O_5 MnO_2$ (ZVM) and $ZnO-V_2O_5-Sb_2O_3$ (ZVS) polycrystalline ceramics have been prepared for detailed microstructural and electrical characterisation. All samples exhibit non-linear current-voltage behaviour, with non-linear coefficients ranging from 5.0 for ZV to 16.7 for ZVM. The use of X-ray powder diffraction together with microstructural examination by transmission electron microscopy and a comparison of measured interplanar spacings with those quoted in the literature for α -, β - and γ - $Zn_3(VO_4)_2$, has shown evidence for the formation of β -Zn₃(VO₄)₂ in ZV, γ -Zn₃(VO₄)₂ in ZVM and α - $Zn_3(VO_4)_2$ in ZVS. The $Zn_3(VO_4)_2$ phases are found to exist as smaller grains embedded in ZnO grains or residing at triple junctions. Electron diffraction suggests that β -Zn₃(VO₄)₂ has an orthorhombic A lattice, while γ -Zn₃(VO₄)₂ has a monoclinic C lattice. © 1999 Elsevier Science Limited. All rights reserved

Keywords: electron microscopy, microstructurefinal, ZnO, varistors, $Zn_3(VO_4)_2$.

1 Introduction

Zinc oxide with several additives is widely used as a voltage regulator and surge protector because of its highly non-ohmic current-voltage characteristics.¹⁻⁴ It is generally accepted that these characteristics arise from modifications to the electrical characteristics of the zinc oxide grain boundaries caused by the segregation of large ionic additives such as Bi^{1-5} Pr^{6,7} and Ba.⁸ Recent studies have shown that V₂O₅, which is a light-metal oxide, is a promising varistor former.⁹⁻¹² The ZnO-V₂O₅ ceramic system can be sintered at a relatively low temperature of about 900°C which makes it possible for a varistor to be cofired with a silver inner-electrode whose melting point is about 960°C. This is important for applications in multilayer chip components. Interestingly, no detailed transmission electron microscopy (TEM) microstructural studies have been undertaken in the ZnO–V₂O₅ system. Moreover, little information about the secondary phase $Zn_3(VO_4)_2$ known to form in this system can be found in the literature, other than that it occurs in three polymorphs— α , β and γ .¹³ While the α polymorph is known to be orthorhombic,^{14,15} no definitive crystal structures are quoted in the JCPDS files for the β - and γ phases, although interplanar spacings and relative peak intensities are available.¹³ To date, the effect of additives on the performance of ZnO-V₂O₅ varistor ceramics has received little attentionthere is only a single report on the combined effects of low levels of Mn₃O₄, CoO, NiO, Nb₂O₅ and Naglass in a multicomponent ZnO–V₂O₅ varistor.¹²

In this work, V₂O₅-based ZnO varistors containing MnO₂ and Sb₂O₃ were prepared and investigated. α -, β - and γ -Zn₃(VO₄)₂ phases were detected both by XRD and TEM in these samples. Lattice parameters and Bravais lattices for the β - and γ -Zn₃(VO₄)₂ phases are proposed on the basis of indexing diffraction patterns obtained from TEM which are also consistent with the XRD data reported by Brown and Hummel.¹³

2 Experimental Procedures

ZnO– $0.25 \text{ mol}\% V_2O_5$ (ZV), ZnO– $0.25 \text{ mol}\% V_2O_5$ – 1 mol%MnO₂ (ZVM) and ZnO– $0.25 \text{ mol}\% V_2O_5$ – 2 mol%Sb₂O₃ (ZVS) ceramic varistors were prepared from high purity oxide powder starting materials. The powder mixtures were ball-milled for 24 h using zirconia beads in deionised water. The mixtures were then dried and pressed into pellets. The pellets for ZV and ZVM were sintered in

^{*}To whom correspondence should be addressed. Fax: +44-(0)1223-334-567; e-mail:hhh20@cus.cam.ac.uk

an atmosphere of ambient air for 4 h at 900°C and cooled at 5°C min⁻¹. ZVS pellets were not fully densified when sintered at 900°C, and a higher temperature of 1200°C had to be used in order to get a dense material.

The as-sintered specimens were lapped on both surfaces to ensure flat and parallel surfaces. They were coated with conductive silver paint on both surfaces, then heat cured to provide ohmic contacts. The current-voltage (I-V) characteristics were determined at room temperature using a variable dc power supply (Heathkit Model IP-17). X-ray analysis of the sintered samples were carried out using Cu K_{α} radiation on a Philips PW1710 vertical powder diffractometer. Specimens for TEM were prepared using standard ion beam thinning methods and examined using a JEOL 2000FX at 200 kV.

3 Results

3.1 Current-voltage characteristics

The electrical properties of the V_2O_5 -based ZnO materials were characterised by their current density-electric field (*J*–*E*) properties. The *J*–*E* curves for the samples are shown in Fig. 1. The corresponding parameters are summarised in

Fig. 1. The current density/electric field (J–E) curves for ZV, ZVM and ZVS.

Table 1. The results show that MnO_2 is effective in increasing further the varistor effect significantly, while Sb_2O_3 has at best a marginal effect. Furthermore, the resistivity is dramatically increased when MnO_2 is incorporated into the $ZnO-V_2O_5$ binary system.

3.2 X-ray diffraction results

The XRD traces for the three samples are shown in Fig. 2. β -Zn₃(VO₄)₂ and γ -Zn₃(VO₄)₂ phases are the only secondary phases detected in ZV and

Fig. 2. X-ray diffraction patterns (Cu K_{α}) for ZV, ZVM and ZVS.

Fable 1.	Summary	of electrical	results for	or ZnO-	V_2O_5	varistor	systems
----------	---------	---------------	-------------	---------	----------	----------	---------

Sample	Composition	Sintering schedule	Resistivity in ohmic region (MΩ cm)	Non-linear coefficient, α^a	Onset electric field $(V cm^{-1})^b$
ZV	$ZnO - 0.25 mol\%V_2O_5$	900°C for 4 h	3	5.0	1000
ZVM	ZnO-0.25 mol% $V_2O_5-1 mol\% MnO_2$	900°C for 4 h	40	16.7	900
ZVS	ZnO-0.25 mol% $V_2O_5-2 mol\%Sb_2O_3$	1200°C for 4 h	3	8.0	1000

 ${}^{a}\alpha = \frac{\log(J_2/J_1)}{\log(E_2/E_1)}$ where $J_1 = 0.5$ mA cm⁻² and $J_2 = 5$ mA cm⁻².

^bThe electric field at 1 mA cm⁻².

Fig. 3. (a) Bright-field image and (b) electron diffraction pattern of α -Zn₃(VO₄)₂ in ZVS. Zn₃(VO₄)₂ is denoted by zv in small letters.

ZVM, respectively, and only the spinel phase, $Zn_7Sb_2O_{12}$, is detected as a secondary phase in ZVS.

3.3 TEM observations

The samples all have a similar microstructure consisting mainly of ZnO grains and the minority $Zn_3(VO_4)_2$ phase. The identity of this minority phase was confirmed to be $Zn_3(VO_4)_2$ using energy dispersive X-ray analysis and from the magnitudes of the interplanar spacings seen in the electron diffraction patterns from this phase. The grains of $Zn_3(VO_4)_2$ phase are either embedded in the ZnO grains, or occur at triple points, as shown in Figs 3 and 4. $Zn_3(VO_4)_2$, which was not detected in ZVS using XRD, was however observed using TEM. This is likely be due to the fact that the amount of $Zn_3(VO_4)_2$ is too little to be detected using XRD. Moreover, the strongest peaks of $Zn_3(VO_4)_2$ polymorphs overlap with those of the major ZnO and spinel phases, making identification of a relatively small amount of Zn₃(VO₄)₂ difficult. The electron diffraction patterns (e.g. Fig. 3) obtained from the $Zn_3(VO_4)_2$ grains in ZVS can be indexed according to the α -Zn₃(VO₄)₂ polymorph, which has an orthorhombic structure (space group Abam), with a = 8.299 Å, $b = 11.5284 \text{ Å}, \quad c = 6.1116 \text{ Å}$ (JCPDS 34-378). Electron diffraction patterns were also obtained for the $Zn_3(VO_4)_2$ phases in ZV and ZVM which XRD evidence suggested were the β and γ polymorphs, respectively. A systematic approach was used to deduce the crystal structures

Fig. 4. Bright-field images of (a) β -Zn₃(VO₄)₂ and (b) γ -Zn₃(VO₄)₂ in ZV and ZVM, respectively, with zv denoting Zn₃(VO₄)₂.

for β - and γ -Zn₃(VO₄)₂ so that consistent indexing of these diffraction patterns could be achieved. The methodology used suggests that β -Zn₃(VO₄)₂ has an orthorhombic *A* lattice, with a=8.34 Å, b = 10.68 Å, and c = 17.0 Å, while γ -Zn₃(VO₄)₂ has a monoclinic *C* lattice, with a = 10.40 Å, b = 8.59 Å, c = 9.44 Å and $\beta = 98.8^{\circ}$. It is worth noting that the *a* and *b* lattice parameters for the β -Zn₃(VO₄)₂ are similar to those of α -Zn₃(VO₄)₂, and that the *c* of β -phase is nearly 3 times that of the α -phase. Hence, the β -phase can be viewed as a superlattice of the α -phase. Figures 5 and 6 show selected indexed electron diffraction patterns of β - and γ -Zn₃(VO₄)₂, respectively.

Spinel grains detected in ZVS were about $1 \mu m$ in size. The grains were usually located singly between ZnO grains. A typical example is shown in Fig. 7 of a bright-field image taken from ZVS. The spinel grains were mostly regular polyhedrally shaped, indicating that these grains have had plenty of time to adjust their shape to a near-equilibrium form while surrounded by a liquid phase.

4 Discussion

4.1 Current–voltage characteristics

The electrical conduction in ZnO-V₂O₅ binary ceramics can be rationalised in terms of a typical Schottky barrier controlled current behaviour, with the non-linearity characteristics occurring as a consequence of the existence of a grain boundary barrier layer.⁹ In ZnO–Bi₂O₃, the addition of transition metal oxides significantly increases the nonlinear behaviour. It has been postulated that transition metal oxides are involved in the formation of interfacial states and deep bulk traps at grain boundaries,¹⁶ providing larger potential barriers to give better non-linear characteristics.¹⁷ It is reasonable to infer that the same principle applies for the ZnO-V₂O₅ system, which therefore explains qualitatively the higher non-linear coefficient obtained for our sample containing MnO₂.

Fig. 5. Selected area diffraction patterns of β -Zn₃(VO₄)₂ in various zone axes: (a)[010], (b) [001] and (c) [101].

Fig. 6. Selected area diffraction patterns of γ -Zn₃(VO₄)₂ in various zone axes: (a)[100], (b) [001] and (c) [012].

Fig. 7. A bright-field image of spinel phase between ZnO grains, taken from ZVS.

Sb₂O₃ is added to ZnO–Bi₂O₃ system for two reasons.¹⁶ It suppresses grain growth by forming the spinel phase, Zn₇Sb₂O₁₂, and enhances the solubility of ions such as Zn in the Bi₂O₃-rich liquid phase. This latter role is very important for the defect distribution formed at the grain boundaries during cooling. However, in the ZnO–V₂O₅ system, the addition of Sb₂O₃ does not increase the non-linear coefficient significantly implying that it does not enhance the solubility of Zn in the vanadium-rich liquid phase.

4.2 $Zn_3(VO_4)_2$ phases

All three polymorphs of $Zn_3(VO_4)_2$ were detected in our samples, depending on the type of additives that were added into the system. α -Zn₃(VO₄)₂ is the stable room temperature phase and is found in ZVS, while the non-quenchable high-temperature β - and γ -phases are found in ZV and ZVM respectively. γ -Zn₃(VO₄)₂ is also detected in ZnO-V₂O₅ varistors containing trace amounts of Mn₃O₄, CoO, NiO, Nb₂O₅ and Na-glass.¹² These impurities presumably help to stabilise this hightemperature phase. In the case of Sb₂O₃ addition, the formation of the spinel phase might not be enough to stabilise the high temperature phase, enabling the α -phase to be formed instead. The formation of the β -phase in ZV suggest that the β -phase is not likely to be an impurity stabilised high temperature phase. $Zn_3(VO_4)_2$ phase is also reported by Tsai and Wu in binary ZnO-V₂O₅ ceramics.⁹ However, they did not state which particular polymorph was formed.

High non-linear coefficients are obtained for V_2O_5 -doped multicomponent ZnO varistor which have $Zn_3(VO_4)_2$ existing as the γ -phase.¹² In this work, the best non-linear characteristic is observed for ZVM which also contains γ -Zn₃(VO₄)₂. Thus, there is the implication of γ -Zn₃(VO₄)₂ in V₂O₅-doped zinc oxide ceramics may be a good indicator of desirable varistor behaviour, but further work is clearly required to identify those microstructural

variables which give rise to optimum varistor behaviour in this family of materials.

5 Conclusions

 V_2O_5 shows promise as a variator former for ZnObased varistors. Zinc oxide doped with V_2O_5 exhibits non-linear characteristics with non-linear coefficient comparable to that of the ZnO-Bi₂O₃ binary system. They can be fully densified at a lower sintering temperature (i.e. 900°C) compared to that needed for densifying Bi₂O₃-doped ZnO materials which is normally $\geq 1000^{\circ}$ C. The highest non-linear coefficient of 16.7 is obtained for ZnO doped with $0.25 \text{ mol}\% \text{ V}_2\text{O}_5$ and $1 \text{ mol}\% \text{MnO}_2$ (ZVM). α , β and γ -Zn₃(VO₄)₂ are detected in ZnO-V₂O₅-Sb₂O₃ (ZVS), ZnO-V₂O₅ (ZV) and ZnO-V₂O₅-MnO₂ (ZVM) varistor ceramics, respectively. Electron diffraction patterns suggest that β - $Zn_3(VO_4)_2$ has an orthorhombic A lattice, with a = 8.34 Å, b = 10.68 Å, and c = 17.0 Å, while γ - $Zn_3(VO_4)_2$ has a monoclinic C lattice, a = 10.40 Å, $b = 8.59 \text{ Å}, c = 9.44 \text{ Å} \text{ and } \beta = 98.8^{\circ}.$

Acknowledgements

The authors would like to thank Professor A. H. Windle F.R.S. for the provision of laboratory facilities and Nanyang Technological University, Singapore for financial support for HHH.

References

- 1. Inada, M., Crystal phases of non-ohmic zinc oxide ceramics. Jpn. J. Appl. Phys., 1978, 17, 1–10.
- Eda, K., Iga, A. and Matsuoka, M., Degradation mechanism of non-ohmic zinc oxide ceramics. J. Appl. Phys., 1980, 51, 2678–2684.
- Levinson, L. M. and Philipp, H. R., Zinc oxide varistors– A review. Am. Ceram. Soc. Bull., 1986, 65, 639–646.
- Gupta, T. K., Applications of zinc oxide varistors. J. Am. Ceram. Soc., 1990, 73, 1817–1840.
- Wong, J., Sintering and varistor characteristics of ZnO– Bi₂O₃ ceramics. J. Appl. Phys., 1980, 51, 4453–4459.
- Alles, A. B. and Burdick, V. L., The effect of liquid-phase sintering on the properties of Pr₆O₁₁-based varistors. J. Appl. Phys., 1991, **70**, 6883–6890.
- Alles, A. B., Puskas, R., Callahan, G. and Burdick, V. L., Compositional effects on the liquid-phase sintering of praseodymium oxide-doped zinc oxide varistors. *J. Am. Ceram. Soc.*, 1993, **76**, 2098–2102.
- Matsuoka, M., Masuyama, T. and Lida, Y., Voltage non-linearity of zinc oxide ceramics doped with alkali earth metal oxide. *Jpn. J. Appl. Phys.*, 1969, 8, 1275– 1280.
- Tsai, J. K. and Wu, T. B., Nonohmic characteristics of ZnO-V₂O₅ ceramics. J. Appl. Phys., 1994, 76, 4817– 4822.
- Tsai, J. K. and Wu, T. B., Microstructure and nonohmic properties of ZnO-V₂O₅ ceramics. *Jpn. J. Appl. Phys.*, 1995, 34, 6452–6457.

- Tsai, J. K. and Wu, T. B., Microstructure and nonohmic properties of binary ZnO-V₂O₅ ceramics sintered at 900°C. *Mat. Lett.*, 1996, **26**, 199–203..
- Chen, C. S., Kuo, C. T., Wu, T. B. and Lin, I. N., Microstructure and electrical properties of V₂O₅-based multicomponent ZnO varistors prepared by microwave sintering process. *Jpn. J. Appl. Phys*, 1997, **36**, 1169– 1175.
- Brown, J. J. and Hummel, F. A., Reactions between ZnO and selected oxides of elements of Groups IV and V. *Trans. Brit. Ceram. Soc.*, 1965, 64, 419–437.
- 14. Morris, M. C., McMurdie, H. F., Evans, E. H., Paretzkin,

B., Parker, H. S., Pyrros, N. P. and Hubbard, C. R., Nat. Bur. Stand. (U.S.) Monogr. 25: Standard X-ray diffraction powder patterns, 1984, **20**, 111.

- 15. Gopal, R. and Calvo, C., Crystal structure of γ -Zn₃(VO₄)₂. *Canadian J. Chem.*, 1971, **49**, 3056–3059.
- Eda, K., Zinc oxide varistors. *IEEE Electrical Insulation Magazine*, 1989, 5, 28–41.
- Ezhilvalavan, S. and Kutty, T. R. N., Dependence of non-linearity coefficients on transition metal oxide concentration in simplified compositions of ZnO+ Bi₂O₃+MO varistor ceramics (M=Co or Mn). J. Mater. Sci.: Mater. in Elec., 1996, 7, 137–148.